Indication Criteria for Genetic Testing
Evaluation of validity and clinical utility

Indication criteria for disease:
Angelman-Syndrome [UBE3A]

1. General information on authorship
Name and address of institution:
Name: Institute of Human Genetics, Medical University Lübeck
Address: Ratzeburger Allee 160
Postcode: D-23538
City: Lübeck
Tel.: +49-451-500-2620
Fax: +49-451-500-4187
E-mail: marianne.schirr@uk-sh.de
Internet: www.humangenetik.mu-luebeck.de

Head of the institution:
Name: Prof. Dr. Gabriele Gillesen-Kaesbach
Tel.: +49-451-500-2620
Fax: +49-451-500-4187
E-mail: g.gillesen@uk-sh.de

Author of this text, date:
Name: Prof. Dr. Eberhard Schwinger
Tel.: +49-451-500-6055
Fax: +49-451-500-4187
E-mail: schwing@uni-luebeck.de
Date: 05.06.2007

Reviewer, validation date:
Name: Prof. Dr. Bernhard Horstemke
Tel.: +49-201-723-4556
Fax: +49-201-723-5900
E-mail: bernhard.horstemke@uni-due.de
Date: 16.07.2007

Translator, translation date:
Name: Prof. Dr. Ulrich Langenbeck
E-mail.: Ulrich.Langenbeck@gmx.net
Date: 09.03.2008

Re-editor, date:
Name:
Tel.:
Fax:
E-mail:
Date:
2. Disease characteristics

2.1 Name of the Disease (Synonyms): *Angelman syndrome*

2.2 OMIM# of the Disease: **105830**

2.3 Name of the Analysed Genes or DNA/Chromosome Segments: *UBE3A / #15q11-q13*

2.4 OMIM# of the Gene(s): **601623**

2.5 Mutational Spectrum:
- 70% maternal deletion 15q11-q13
- 1% paternal uniparental disomy [upd(15)pat]
- 3% imprinting defect
- 15% mutations in *UBE3A* gene
- 10% other

2.6 Analytical Methods:
- methylation test, FISH, microsatellite analysis, MLPA;
- if methylation is normal > search for *UBE3A* mutations

2.7 Analytical Validation
- parallel analysis of positive and negative controls

2.8 Estimated Frequency of the Disease in Germany
- (Incidence at birth ("birth prevalence") or population prevalence):
 - prevalence at birth 1:12,000-1:20,000

2.9 If applicable, prevalence in the ethnic group of investigated person: *not applicable*

2.10 Diagnostic Setting:

<table>
<thead>
<tr>
<th>(Differential)diagnostics</th>
<th>Yes.</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>☒</td>
<td></td>
</tr>
<tr>
<td>B. Predictive Testing</td>
<td></td>
<td>☒</td>
</tr>
<tr>
<td>C. Risk assessment in Relatives</td>
<td>☒</td>
<td></td>
</tr>
<tr>
<td>D. Prenatal</td>
<td>☒</td>
<td></td>
</tr>
</tbody>
</table>

Comment: *none*
3. Test characteristics

<table>
<thead>
<tr>
<th>genotype or disease</th>
<th>present</th>
<th>absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>test</td>
<td>pos.</td>
<td>neg.</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A: true positives</th>
<th>B: false positives</th>
<th>C: false negatives</th>
<th>D: true negatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>sensitivity</td>
<td>A/(A+C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>specificity</td>
<td>D/(D+B)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pos. predict. value</td>
<td>A/(A+B)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>neg. predict. value</td>
<td>D/(C+D)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.1 Analytical Sensitivity
(proportion of positive tests if the genotype is present)
practically 100%

3.2 Analytical Specificity
(proportion of negative tests if the genotype is not present)
practically 100%

3.3 Clinical Sensitivity
(proportion of positive tests if the disease is present)
The clinical sensitivity can be dependent on variable factors such as age or family history. In such cases a general statement should be given, even if a quantification can only be made case by case.
85-90%

3.4 Clinical Specificity
(proportion of negative tests if the disease is not present)
The clinical specificity can be dependent on variable factors such as age or family history. In such cases a general statement should be given, even if a quantification can only be made case by case.
practically 100%

3.5 Positive clinical predictive value
(lifetime risk to develop the disease if the test is positive).
practically 100%

3.6 Negative clinical predictive value
(Probability not to develop the disease if the test is negative).
Assume an increased risk based on family history for a non-affected person. Allelic and locus heterogeneity may need to be considered.

Index case in that family had been tested:
practically 100%

Index case in that family had not been tested:
can only be clarified through analysis of the non-affected individual
4. Clinical Utility

4.1 (Differential)diagnosis: The tested person is clinically affected
(To be answered if in 2.10 "A" was marked)

4.1.1 Can a diagnosis be made other than through a genetic test?
No. (continue with 4.1.4)
Yes. ☐
 clinically.
 imaging.
 endoscopy.
 biochemistry.
 electrophysiology.
 other (please describe)

4.1.2 Describe the burden of alternative diagnostic methods to the patient

4.1.3 How is the cost effectiveness of alternative diagnostic methods to be judged?

4.1.4 Will disease management be influenced by the result of a genetic test?
No. ☒
Yes. ☐
 Therapy (please describe)
 Prognosis (please describe)
 Management (please describe)
4.2 Predictive Setting: The tested person is clinically unaffected but carries an increased risk based on family history
(To be answered if in 2.10 "B" was marked)

4.2.1 Will the result of a genetic test influence lifestyle and prevention?
If the test result is positive (please describe)

If the test result is negative (please describe)

4.2.2 Which options in view of lifestyle and prevention does a person at-risk have if no genetic test has been done (please describe)?

4.3 Genetic risk assessment in family members of a diseased person
(To be answered if in 2.10 "C" was marked)

4.3.1 Does the result of a genetic test resolve the genetic situation in that family?
No.

4.3.2 Can a genetic test in the index patient save genetic or other tests in family members?
see 4.3.1

4.3.3 Does a positive genetic test result in the index patient enable a predictive test in a family member?
not applicable

4.4 Prenatal diagnosis
(To be answered if in 2.10 "D" was marked)

4.4.1 Does a positive genetic test result in the index patient enable a prenatal diagnostic?
Yes.

5. If applicable, further consequences of testing
Please assume that the result of a genetic test has no immediate medical consequences. Is there any evidence that a genetic test is nevertheless useful for the patient or his/her relatives? (Please describe)
Parents will finally know the cause of the disease.